Respuesta :
Answer:
11325
Step-by-step explanation:
[tex]\boxed{\begin{minipage}{7.3 cm}\underline{Sum of the first $n$ terms of an arithmetic series}\\\\$S_n=\dfrac{1}{2}n[a+l]$\\\\where:\\\phantom{ww}$\bullet$ $a$ is the first term. \\ \phantom{ww}$\bullet$ $l$ is the last term.\\\phantom{ww}$\bullet$ $n$ is the number of terms.\\\end{minipage}}[/tex]
A positive integer is a whole number that is greater than zero.
Therefore:
- The first term, a, of the first 150 positive integers is 1.
- The last term, l, of the first 150 positive integers is 150.
- The number of terms, n, is 150.
Substitute the values into the formula to find the sum of the first 150 positive integers:
[tex]\implies S_{150}=\dfrac{1}{2}(150)\left[1+150\right][/tex]
[tex]\implies S_{150}=75 \cdot 151[/tex]
[tex]\implies S_{150}=11325[/tex]